Structure of the indicatrix bundle of Finsler-Rizza manifolds

نویسندگان

  • V. Balan
  • A. Tayebi
چکیده

In this paper, we construct a framed f -structure on the slit tangent space of a Rizza manifold. This induces on the indicatrix bundle an almost contact metric. We find the conditions under which this structure reduces to a contact or to a Sasakian structure. Finally we study these structures on Kählerian Finsler manifolds. M.S.C. 2010: 53B40, 53C60, 32Q60, 53C15.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometric Characterization of Finsler Manifolds of Constant Curvature

We prove that a Finsler manifold Fm is of constant curvature K = 1 if and only if the unit horizontal Liouville vector field is a Killing vector field on the indicatrix bundle IM of Fm.

متن کامل

The Scalar Curvature of the Tangent Bundle of a Finsler Manifold

Let Fm = (M,F ) be a Finsler manifold and G be the Sasaki– Finsler metric on the slit tangent bundle TM0 = TM {0} of M . We express the scalar curvature ρ̃ of the Riemannian manifold (TM0, G) in terms of some geometrical objects of the Finsler manifold Fm. Then, we find necessary and sufficient conditions for ρ̃ to be a positively homogenenous function of degree zero with respect to the fiber coo...

متن کامل

Contact structures on the indicatrix of a complex Finsler space

Continuing the study of the complex indicatrix IzM , approached as an embedded CR hypersurface on the punctual holomorphic tangent bundle of a complex Finsler space, we study in this paper the almost contact structures that can be introduced on IzM . The Levi form and characteristic direction of the complex indicatrix are given and the CR distributions integrability is studied. Using these we c...

متن کامل

A FRAMED f(3, 1)− STRUCTURE ON TANGENT MANIFOLDS

A tangent manifold is a pair (M, J) with J a tangent structure (J2 = 0, ker J = im J) on the manifold M . A systematic study of tangent manifolds was done by I. Vaisman in [5]. One denotes by HM any complement of im J := TV . Using the projections h and v on the two terms in the decomposition TM = HM ⊕TV one naturally defines an almost complex structure F on M . Adding to the pair (M, J) a Riem...

متن کامل

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011